On Saint-Venant s principle in the dynamics of elastic beams

نویسندگان

  • V. Berdichevsky
  • D. J. Foster
چکیده

In dynamics, Saint-Venant s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a ‘‘probabilistic approach’’ to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140]. 2003 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Saint-Venant s principle in the two-dimensional flexural vibrations of elastic beams

In this paper we apply the method proposed in our previous paper [Int. J. Solids Struct. 40(13–14) (2003) 3293] to quantitatively estimate the violation of Saint-Venant s principle in the problem of flexural vibration of a two-dimensional strip. A probabilistic approach is used to determine the relative magnitude of the penetrating stress state and the results of computations are presented as a...

متن کامل

A reciprocity theorem in linear gradient elasticity and the corresponding Saint-Venant principle

In many practical applications of nanotechnology and in microelectromechanical devices, typical structural components are in the form of beams, plates, shells and membranes. When the scale of such components is very small, the material microstructural lengths become important and strain gradient elasticity can provide useful material modelling. In addition, small scale beams and bars can be use...

متن کامل

Saint-Venant's principle in linear elasticity with microstructure

Toupin's version of the Saint-Venant principle in linear elasticity is generalized to the case of linear elasticity with mierostructure. That is, it is shown that, for a straight prismatic bar made of an isotropic linear elastic material with rnicrostructure and loaded by a self-equilibrated force system at one end only, the strain energy stored in the portion of the bar which is beyond a dista...

متن کامل

Saint-Venant’s Principe of the Problem of the Cylinder

The Statement of Modified Saint-Venant’s Principle is suggested. The axisymmetrical deformation of the infinite circular cylinder loaded by an equilibrium system of forces on its near end is discussed and its formulation of Modified Saint-Venant’s Principle is established. It is evident that finding solutions of boundary-value problems is a precise and pertinent approach to establish Saint-Vena...

متن کامل

Crack analysis of an orthotropic circular bars reinforced by a magnetic coating under Saint-Venant torsion

This paper presents an analytical solution for an orthotropic circular cross section bar with a magnetic coating weakened by multiple arbitrary oriented cracks under Saint-Venant torsion by means of the distributed dislocation technique. At first, the solution of the orthotropic bar with a magnetic coating weakened by a Volterra-type screw dislocation is achieved with the aid of the finite Four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003